Type: \(\displaystyle 3A^{1}_1\) (Dynkin type computed to be: \(\displaystyle 3A^{1}_1\))
Simple basis: 3 vectors: (1, 1, 1, 1, 1, 1), (0, 1, 1, 1, 1, 0), (0, 0, 1, 1, 0, 0)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: 0
simple basis centralizer: 0 vectors:
Number of k-submodules of g: 18
Module decomposition, fundamental coords over k: \(\displaystyle V_{2\omega_{3}}+2V_{\omega_{2}+\omega_{3}}+2V_{\omega_{1}+\omega_{3}}+V_{2\omega_{2}}+2V_{\omega_{1}+\omega_{2}}+V_{2\omega_{1}}+2V_{\omega_{3}}+2V_{\omega_{2}}+2V_{\omega_{1}}+3V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 12(0, 0, 0, -1, 0, 0)(0, 0, 1, 0, 0, 0)g_{3}
g_{-4}
\varepsilon_{3}-\varepsilon_{4}
-\varepsilon_{4}+\varepsilon_{5}
Module 22(0, 0, -1, 0, 0, 0)(0, 0, 0, 1, 0, 0)g_{4}
g_{-3}
\varepsilon_{4}-\varepsilon_{5}
-\varepsilon_{3}+\varepsilon_{4}
Module 32(0, 0, 0, -1, -1, 0)(0, 1, 1, 0, 0, 0)g_{8}
g_{-10}
\varepsilon_{2}-\varepsilon_{4}
-\varepsilon_{4}+\varepsilon_{6}
Module 43(0, 0, -1, -1, 0, 0)(0, 0, 1, 1, 0, 0)g_{9}
h_{4}+h_{3}
g_{-9}
\varepsilon_{3}-\varepsilon_{5}
0
-\varepsilon_{3}+\varepsilon_{5}
Module 52(0, -1, -1, 0, 0, 0)(0, 0, 0, 1, 1, 0)g_{10}
g_{-8}
\varepsilon_{4}-\varepsilon_{6}
-\varepsilon_{2}+\varepsilon_{4}
Module 62(0, 0, 0, -1, -1, -1)(1, 1, 1, 0, 0, 0)g_{12}
g_{-15}
\varepsilon_{1}-\varepsilon_{4}
-\varepsilon_{4}+\varepsilon_{7}
Module 74(0, 0, -1, -1, -1, 0)(0, 1, 1, 1, 0, 0)g_{13}
g_{-5}
g_{2}
g_{-14}
\varepsilon_{2}-\varepsilon_{5}
-\varepsilon_{5}+\varepsilon_{6}
\varepsilon_{2}-\varepsilon_{3}
-\varepsilon_{3}+\varepsilon_{6}
Module 84(0, -1, -1, -1, 0, 0)(0, 0, 1, 1, 1, 0)g_{14}
g_{-2}
g_{5}
g_{-13}
\varepsilon_{3}-\varepsilon_{6}
-\varepsilon_{2}+\varepsilon_{3}
\varepsilon_{5}-\varepsilon_{6}
-\varepsilon_{2}+\varepsilon_{5}
Module 92(-1, -1, -1, 0, 0, 0)(0, 0, 0, 1, 1, 1)g_{15}
g_{-12}
\varepsilon_{4}-\varepsilon_{7}
-\varepsilon_{1}+\varepsilon_{4}
Module 104(0, 0, -1, -1, -1, -1)(1, 1, 1, 1, 0, 0)g_{16}
g_{-11}
g_{7}
g_{-18}
\varepsilon_{1}-\varepsilon_{5}
-\varepsilon_{5}+\varepsilon_{7}
\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{3}+\varepsilon_{7}
Module 113(0, -1, -1, -1, -1, 0)(0, 1, 1, 1, 1, 0)g_{17}
h_{5}+h_{4}+h_{3}+h_{2}
g_{-17}
\varepsilon_{2}-\varepsilon_{6}
0
-\varepsilon_{2}+\varepsilon_{6}
Module 124(-1, -1, -1, -1, 0, 0)(0, 0, 1, 1, 1, 1)g_{18}
g_{-7}
g_{11}
g_{-16}
\varepsilon_{3}-\varepsilon_{7}
-\varepsilon_{1}+\varepsilon_{3}
\varepsilon_{5}-\varepsilon_{7}
-\varepsilon_{1}+\varepsilon_{5}
Module 134(0, -1, -1, -1, -1, -1)(1, 1, 1, 1, 1, 0)g_{19}
g_{-6}
g_{1}
g_{-20}
\varepsilon_{1}-\varepsilon_{6}
-\varepsilon_{6}+\varepsilon_{7}
\varepsilon_{1}-\varepsilon_{2}
-\varepsilon_{2}+\varepsilon_{7}
Module 144(-1, -1, -1, -1, -1, 0)(0, 1, 1, 1, 1, 1)g_{20}
g_{-1}
g_{6}
g_{-19}
\varepsilon_{2}-\varepsilon_{7}
-\varepsilon_{1}+\varepsilon_{2}
\varepsilon_{6}-\varepsilon_{7}
-\varepsilon_{1}+\varepsilon_{6}
Module 153(-1, -1, -1, -1, -1, -1)(1, 1, 1, 1, 1, 1)g_{21}
h_{6}+h_{5}+h_{4}+h_{3}+h_{2}+h_{1}
g_{-21}
\varepsilon_{1}-\varepsilon_{7}
0
-\varepsilon_{1}+\varepsilon_{7}
Module 161(0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0)h_{4}-h_{3}0
Module 171(0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0)h_{5}-h_{2}0
Module 181(0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0)h_{6}-h_{1}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 15
Heirs rejected due to not being maximally dominant: 0
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 0
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
Parabolically induced by 2A^{1}_1
Potential Dynkin type extensions: 4A^{1}_1,